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Stochastic Langevin equations: Markovian and non-Markovian dynamics
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Non-Markovian stochastic Langevin-like equations of motion are compared to their corresponding Markov-
ian (local) approximations. The validity of the local approximation for these equations, when contrasted with
the fully nonlocal ones, is analyzed in detail. The conditions for when the equation in a local form can be
considered a good approximation are then explicitly specified. We study both the cases of additive and
multiplicative noises, including system-dependent dissipation terms, according to the fluctuation-dissipation

theorem.
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I. INTRODUCTION

Most systems in nature cannot be regarded as purely
closed systems but open ones, interacting with an environ-
ment (e.g., a thermal bath). The evolution of these systems
must then be nonunitary, i.e., interactions with the environ-
ment must lead to dissipation as well-stochastic effects,
which is the way the environment back-reacts on the system.
One common way for describing this nonunitary evolution is
by means of stochastic Langevin-like equations of motion.
These nondeterministic equations of motion are used in
many systems of interest, such as simulating Brownian mo-
tion in (classical and quantum) statistical mechanics and in
other areas of physical interest [1].

A classical example of a system whose dynamics is mod-
eled by a Langevin equation of motion is the one that de-
scribes the Brownian motion of a classical particle of coor-
dinate g, unitary mass, and subjected to a potential V(gq) (as
usual, dots mean derivative with respect to time and
V'[q(]=aV/dg),

4(0) + nq(1) + V'[q(D)] = £@), (1.1)

where 7 is a Markovian (local) dissipation term and &(z) is a
stochastic term with white noise and Gaussian properties,
satisfying (throughout this work, we consider the Boltzmann
constant kz=1)

(E0)=0, (&0)&))=2Tnot-1").

Approaches with Langevin equations such as Eq. (1.1) and
its generalizations are used in different contexts, e.g., in clas-
sical statistical mechanics to study problems with dissipation
and noise, to determine how order parameters equilibrate and
in the studies such as dynamic scaling and dynamic critical
phenomena [2,3].

Though extensively used, equations of the form of Eq.
(1.1), with noise properties as given by Eq. (1.2), can only be
considered phenomenologically. This is because it implicitly
assumes that the environment interacts instantaneously with

(1.2)
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the system. This is a physically unacceptable situation that
violates causality, since the environment bath has no memory
time. Its is worth mentioning that a similar situation happens
with the description of the dynamics of a conserved order
parameter by a Cahn-Hilliard equation [4], which lacks cau-
sality [5]. In the case of the Cahn-Hilliard equation, this hap-
pens because, since it is a diffusion-reaction type of equa-
tion, it should be characterized by microscopic scattering
events. In real systems, scattering events proceed through
finite time intervals, which, consequently, must lead to finite
memory effects. In order to fix this bad behavior of the
Cahn-Hilliard equation, memory effects must be taken into
account, as explicitly shown recently in Ref. [6]. In a micro-
scopic description of the effects of the environment degrees
of freedom on some select variables taken as the system, the
same is expected to happen. Dissipation and stochastic
(noise) terms are expected to originate from scattering
events, thus giving origin to finite interaction times that re-
flect in the system’s equation of motion as nonlocal (i.e.,
non-Markovian) terms with memory effects. The simplest
archetype of this is the description of the system environ-
ment as being modeled by linearly coupled harmonic oscil-
lators [7] (for a general review, see, e.g., Ref. [8]), which
also become to be known as Caldeira-Leggett type of models
[9]. The derived equation of motion for the system variable,
when the bath degrees of freedom are integrated out, leads to
a generalized Langevin equation (GLE) of the form

C'I'(t)+f di'D(t-1")g(t") + V'[q(t)]= &), (1.3)

0

where 7, is some initial time, D(z—1t") is a dissipation kernel,
and the noise term &(z) is still Gaussian with zero mean but
colored, i.e., with two-point correlation, according to the
fluctuation-dissipation theorem for classical systems and,
thus, &(r) satisfies

(§0)=0, (&0&)=TD(t-1"),

where averages are assumed to be taken with respect to a
bath of free oscillators with equilibrium distribution pg)) at
some temperature 7. Similar derivations in the context of
field theory models (see, for instance, Refs. [10,11]) also

show the emergence of generalized equations of motion of

(1.4)
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the form of Eq. (1.3), with a more complicated structure
depending on the form of the coupling of the system (e.g.,
some fields we are interested in the dynamics) with the en-
vironment (or bath fields, made of the remaining fields other
than the one representing the system field).

Despite the fundamental differences between Egs. (1.1)
and (1.3), we expect that when the time scale of the memory
kernel D(z—1t") is much smaller than any other time scales of
the system, the local approximation (1.1), with dissipation
coefficient defined by [12,13]

77=f di'D(t-1"), (1.5)

can still be a good approximation for the system’s dynamics
and the effects of finite memory be negligible. There is also
an immense saving of effort as well as much more transpar-
ent understanding of the physics from a local equation as
opposed to a nonlocal one, since the former can generally be
analyzed with much less numerical treatment than the latter,
thus it is a very important question to know when, and how
accurately, a generally nonlocal equation can be approxi-
mated by a local form. Likewise, when the memory con-
strains cannot be ignored, such as when the typical micro-
scopic time scales are large in comparison to the other time
scales characterizing the dynamics, we must then be able to
have appropriate tools to tackle the non-Markovian equations
of motion. This is possible with some restrict forms of ker-
nels, as we are going to see below, which, nevertheless, can
represent physically relevant systems of interest, thus, being
well motivated.

In this work, our objective is to gauge the applicability of
an equation of motion of the form of Eq. (1.1) when com-
pared to the non-Markovian form, when considering some of
the most common forms for the dissipation kernel D(z,t’).
These forms for the dissipation kernel include, for example,
the one that describes an Ornstein-Uhlenbeck (OU) process
[14] and the exponential damped harmonic (EDH) kernel
[15] (see also Ref. [16] for a recent review on the different
colored noise terms used in the literature). We study both the
cases of additive and multiplicative noises, including system-
dependent dissipation terms, according to the fluctuation-
dissipation theorem. A detailed numerical analysis is made
when the various parameters characterizing the thermal bath,
e.g., the bath relaxation (or damping) parameter and fre-
quency and temperature of the bath, are varied.

The remaining of this work is organized as follows. In
Sec. II, we define the prescription to transform the non-
Markovian equations in a system of Markovian time-
differential equations. We study specifically the OU and
EDH kernels. In Sec. III, we present the numerical results for
the non-Markovian equations for different model parameters
and compare the results to those coming from their Markov-
ian approximations. The results are obtained for both the
cases of additive and multiplicative noises. How the dynam-
ics depends on the various parameters characterizing the
thermal bath is studied in detail. In Sec. IV, we present our
conclusions, discuss the various results we have obtained,
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and we give a possible relation and the relevance of our
results for the study of nonequilibrium dynamics in field
theory models.

II. NON-MARKOVIAN LANGEVIN-LIKE EQUATION

Here we study a GLE describing the interaction of a sys-
tem, denoted by a variable ¢ (which can be, e.g., the coor-
dinate of a particle) in interaction with a thermal bath, where
the noise has the properties such as in Eq. (1.4). The GLE
studied here is then of the generic form

(1) + (1) f dt' ¢"(t")D(t—1") (") + V'($) = ¢"(1) (1),

(2.1)

where n=0, 1, with n=0 giving the standard GLE of additive
form, such as Eq. (1.3), while for n=1 gives a multiplicative
GLE. The multiplicative noise and system-dependent dissi-
pation form are motivated from field theory calculations
[10,11] and this is why we have also included this special
case here in view of future applications in that case. The
potential in Eq. (2.1) is considered to be one with quadratic
and quartic terms given by

m o, N
Vig)="7¢"+ ¢ (2.2)
where m? and \ are parameters depending on the details of
the system under study. Here, we can associate m with the
system’s frequency and A with the degree of nonlinearity of
the system’s potential (or in the context of field theories, with
the strength of the system’s self-interactions).

Nonlinear GLEs of the form of Eq. (2.1) are notably dif-
ficult to solve. Analytical methods can only be used when the
equation can be approximated or put in a linear form, such as
in the additive noise case and when the quartic term in the
system’s potential can be neglected. This is because, in the
additive noise and variable independent dissipation case,
such as in Eq. (1.3), the equation is in the form of a convo-
lution, so can be solved through Laplace transform for in-
stance [17]. Otherwise, in the more general cases, we must
resort to numerical methods. This is the approach we follow
in this paper in order to analyze the dynamics obtained from
Eq. (2.1). Though there are some specific numerical methods
using, e.g., Fourier transform, that may apply for equations
with non-Markovian kernels of generic form [18], we still
would like to be able to solve equations such as Eq. (2.1)
through standard methods, which are less numerically expen-
sive than other alternatives. This is the case, for example,
when using Runge-Kutta methods. Recently, the authors [17]
have demonstrated the reliability of using a fourth-order
Runge-Kutta method when solving GLE of the OU and EDH
forms. The way this can be done stems from the fact that
non-Markovian equations with kernels of those forms can be
replaced by a system of completely local first-order differen-
tial equations, which has been described in detail in [17].

As already mentioned, in this work, we concentrate our
study in equations such as Eq. (2.1) with non-Markovian
kernels of either the OU type [14]
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Doult=1') = 7ye™™"), (2.3)
or with the EDH type [15]
\
Dyt —1") = e "3 cos[Q, (- 1')]
2y
Y . ,
+ ——sin[Q,(t -t )]}, (2.4)
Q,

where in the equations above, 7 sets the magnitude of the
dissipation, 7y sets the relaxation time for the bath kernels,
=1/, and () gives the oscillation time scale in the case of
the EDH kernel. In Eq. (2.4), QZ:QS— ¥* and so, in the EDH
case, the values of y and () are restricted so to have Q%
=0.

It can be easily shown that the OU and EDH noises can be
generated by the stationary part of the solution of the follow-
ing differential equations, respectively:

€ou(t) = = A ou(D) - \2Tni(1)], (2.5)
Eq(0) + 2964 (0) + Q2 (0) = O2\2Tnl(n),  (2.6)

where ¢ in Egs. (2.5) and (2.6) is a white Gaussian noise
satisfying

(@) =0,

D))= at—1).
Taking 7,=0, we can define a new variable w(z) by [17,19]

(2.7)

w(t) = f dt' ¢"(t"D(t—t")p(t"). (2.8)
0

This, together with Egs. (2.5) and (2.6), leads to the follow-
ing system of local first-order differential equations repre-
senting the GLE Eq. (2.1). For the OU case,

b=y,
y==V' () + ¢"wou + ¢"éou.
Wou == YWou — Dou(0) 9"y,

éou=—Aéou- V’%ﬂ’ (2.9)

while for the EDH case we obtain
b=y,
y==V'($)+ d"wy+ ¢y,
Wy =u—2ywy—Dy(0)¢"y,
i == Qfwy + Dyy(0) ¢y = 2yDy(0) ¢y,
éH =z,
== 297 - Q&+ Q32T L. (2.10)

In the above equations, Doy(0)= 77y, Dy(0)=7Q5/(27), and
D;(0)=0, which follow from Eqs. (2.3) and (2.4). The addi-
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tive noise case is when n=0 is taken in Egs. (2.9) and (2.10),
while n=1 is for the multiplicative noise case. These two
cases, for both types of kernels, are next numerically studied
below.

III. CONTRASTING THE NON-MARKOVIAN
NUMERICAL RESULTS WITH THE MARKOVIAN
APPROXIMATION ONES

Let us now consider our numerical results for the Mar-
kovian and non-Markovian dynamics for the system. In the
Markovian approximation, all memory effects are neglected
and the non-Markovian dissipation term in Eq. (2.1) is re-
placed by a local dissipation term with magnitude as given
by Eq. (1.5), i.e., we write Eq. (2.1) in the form

(1) + 9™ (D) (1) + V' (@) = $"(1) (1)

As we have mentioned before, in general, we expect the local
form the GLE to be a valid approximation when the
relaxation-time scale for the thermal bath, 7=1/7v, is much
smaller than the characteristic time scale for the system, e.g.,

(3.1)

7< ¢/ ¢ (this is equivalent to the quasiadiabatic condition set
in Ref. [10] in the field theory case for the validity of the
local Markovian approximation). When this condition is met
in a sufficiently large time interval Ar=r—z,, thus A¢/ 7> 1
(which is equivalent as taking f,— —) and the time nonlocal
term in Eq. (2.1) can be written as

@' (1) f di'D(t—1")"(t") (1)

= ¢™(1)p(1) dt'D(t—t") — n™ (1) (1),

ty——°
(3.2)

where in the last step we have used the definition Eq. (1.5).
The result (3.2) then leads to the local dissipation term in Eq.
(3.1). Of course, under the conditions set above, at suffi-
ciently short times we expect the memory effects to influence
the dynamics in some significant way, but these memory
effects should quickly become negligible at long times, ¢
>1/v. In any event, we thus expect that after some long-
time periods, the memory effects can become sufficiently
damped such that the Markovian approximation could repre-
sent well the overall dynamics of the system. After all, we
expect that both dynamics, the non-Markovian and the Mar-
kovian ones, to both have the same asymptotic state. But we
still face with a natural and important question to answer: for
a given set of model parameters representing the system and
the thermal bath to which it is coupled to, for how long can
we expect the memory effects due to the non-Markovian
terms to be important and when can they be neglected and
then the dynamics be well represented by the local Eq. (3.1)?
This is because, even though both dynamics are expected to
approach each other asymptotically, the time this happens
could be so long that the memory effects could lead to im-
portant physical effects and the local Markovian dynamics
would just not be appropriate to be used. Since the represen-
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FIG. 1. OU case with additive noise and its Markovian approximation: time evolution for ¢(7). (a) y=0.5, (b) y=1.0, and (¢) y=5.0. The
other parameters are taken as ()(=1.0, »=1.0, T=1.0, m=1.0, and A=1.0.

tation of the dynamics in a local form as given by Eq. (3.1) to be accessed for most practical studies that make use of
represents a considerable simplification, for both a numerical stochastic equations of motion. It is also important to inves-
point of view or for analytical analysis (when it is possible), tigate how the dynamics is affected by varying not only 7,
when compared, e.g., to the full nonlocal, integrodifferential ~ but the other parameters characterizing the thermal bath,
stochastic Eq. (2.1), this then becomes an important question such as the temperature T and frequency (), whose effects
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FIG. 2. EDH case with additive noise and the Markovian approximation: time evolution for ¢(z). (a) for y=0.1, (b) for y=0.3, and (c)
for y=0.5. The other parameters are the same as in Fig. 1.

031143-4



STOCHASTIC LANGEVIN EQUATIONS: MARKOVIAN AND...

T Y B R
0 5 10 15 20 25

(a)

[ P
30 35 40 45 50

PHYSICAL REVIEW E 80, 031143 (2009)

05 10 15 20 25 30 35 40

FIG. 3. The differences A¢ and A¢? in the OU additive case. All other parameters are kept fixed as before.

on the dynamics may not so direct as the ones obtained by
just varying y. Below, we try to answer all these questions,
performing our study, numerically, in the context of the ad-
ditive and multiplicative noise cases, with either the OU or
EDH kernel terms, defined in the previous section.

Next we show the results of our systematic simulations of
the system of differential first-order equations, Egs. (2.9) and
(2.10), for the non-Markovian GLE with OU and EDH ker-
nels, respectively. The results are compared to those obtained
through the local approximation given by Eq. (3.1). All our
simulations were performed with 300 000 realizations over
the noise and we have integrated all differential equations
using a standard fourth-order Runge-Kutta method with a
time step size varying between &t=0.01 and &r=0.001,
which were found to be more than enough for both numeri-
cal stability and also for enough numerical precision (as de-
termined in Ref [17], these values already assure an overall
numerical error of always smaller than about 1%, which suf-
fices for our comparison purposes set here). In all our simu-
lations, we have also used the initial conditions ¢(0)=1 and
#(0)=0. The time in all our evolutions is in units of the
(inverse of the) frequency for the system (which is equiva-
lent to consider m=1 throughout). Comparisons between the
Markovian and non-Markovian dynamics are made varying
the relevant parameters of the bath for the two cases of ker-
nels considered while keeping the system parameters fixed.

A. Additive noise case

Let us now turn to our numerical results. The relevant
bath parameters are the dissipation magnitude 7, the tem-

0.8

0.6

0.4

02
< /.
3 ;
o .

-0.2

-0.4

perature T (that are common to both Markovian and non-
Markovian dynamics), the bath damping parameter 7y, and
the bath frequency (), (in the EDH Kernel case). Since the
dissipation magnitude is common for both types of dynam-
ics, in the following, we keep # fixed, at the value 7=1
throughout (which can be checked to correspond to lead to
an underdamped dynamics in the local equations of motion),
and we vary the remaining bath parameters. This will allow
us to better understand the importance of the memory effects
alone for the dynamics. So, we consider the various dynam-
ics as vy, (), and T are changed. We include the study of how
the dynamics changes with the temperature because this is
useful to determine how this internal property of the thermal
bath influences the dynamics when comparing to both the
Markovian and non-Markovian cases.

We start our analysis by first considering variations in the
parameter y. Representative values for y are then chosen and
all the remaining parameters are initially kept fixed. Note
that since y acts as damping the effects of the nonlocal ker-
nels, the larger is the vy, the better must be the local approxi-
mation for the full nonlocal dynamics. Then we keep vy fixed
at the largest value used in our analysis and then consider
variations in the other parameters. This will allow us to de-
termine the consequent importance of the remaining param-
eters and whether a change of those parameters can discrimi-
nate the types of dynamics studied, for example, discriminate
additive and multiplicative stochastic dynamics.

Let us first consider the GLE with additive noise and OU
kernel. This is considered in Fig. 1, where we plot side by
side our results for the dynamics of the ensemble-averaged
macroscopic system variable ¢, ()= ¢(r), where the average

FIG. 4. The differences A¢ and A¢? in the difference A¢? in the EDH additive case.
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TABLE 1. The approximate time scale, in units of 1/m, for the
non-Markovian dynamics to approach the Markovian one, within a
precision of 1073 for the differences defined in Eq. (3.3).

Y Adou add A‘I%U add Adou mule Ad’éu mult

0.5 73 28 35 70

1.0 32 25 30 24

5.0 14 7 27 12
A(ﬁEDH add A¢123DH add A(ZSEDH mult Ad)%DH mult

0.1 180 89 30 73

0.3 67 33 28 71

0.5 53 26 23 67

is over the noise realizations. This is obtained from the Mar-
kovian and non-Markovian equations, Egs. (3.1) and (2.9),
respectively, with n=0. In Fig. 2, we plot side by side our
results for ¢(z) for the Markovian and non-Markovian re-
gimes for the EDH case, again by considering the additive
noise (n=0).

The effect of changing 7y seen in both Figs. 1 and 2 is
clear and well within the expected. The larger is the relax-
ation time (1/7) for the nonlocal kernels, the larger are the
memory effects, resulting in a strong difference with respect
to the local approximation, seen most notably at short times.
As also expected, at some sufficient long time, that we here
see to depend on how large v is, the two dynamics, Markov-
ian and non-Markovian, approximate one of the other. This is
also seen if we had plotted the correlation {¢?(¢)) for both
OU and EDH cases. The difference between the Markovian

1.0

PHYSICAL REVIEW E 80, 031143 (2009)

and non-Markovian dynamics can also be better estimated by
defining the quantities

A¢ = <¢>n0n7Markovian - <¢>Mark0viam

A ¢2 = < ¢2>non—Markovian - < ¢2>Mark0vian . (3 3)

The results for the differences A¢ and A¢? are shown in
Figs. 3 and 4 for the OU and EDH cases, respectively.

The results from the plots shown in Figs. 3 and 4 are
useful to determine within which time scale the Markovian
and non-Markovian dynamics become sufficiently close
(within to some given precision). The results for these time
scales for the different simulations we have performed for
the Markovian dynamics and for the non-Markovian dynam-
ics with the two types of memory kernels explored here will
be given below in Table I.

An immediate conclusion we can realize from an inspec-
tion of the results shown in Figs. 1-4 is that the time scale
that it takes for the two dynamics to begin to be equivalent is
much larger than the time scale for the kernel relaxation
itself, 1/, and also larger than the typical system’s time
scale, which is typically given by the inverse of the system’s
frequency (1/m). This will remain true for the multiplicative
noise case with either the OU or the EDH memory kernels.

B. Multiplicative noise case

Let us now verify the results concerning the Markovian
and non-Markovian stochastic equations when multiplicative
noise and system-dependent dissipation are concerned. We
then here explore the case n=1 in Egs. (2.9) and (2.10) for
the OU and EDH cases, respectively.
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04} g
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o 02F ]
0.0 N TS e

02k -
04F ]
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FIG. 5. OU case with multiplicative noise and its Markovian approximation: time evolution for ¢(z). (a) for y=0.5, (b) for y=1.0, and
(c) for y=5.0. The other parameters are taken as y=1.0, »=1.0, T=1.0, and A=1.0.
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FIG. 6. EDH case with multiplicative noise and the Markovian approximation: time evolution for ¢(z). (a) for y=0.1, (b) for y=0.3, and

(c) for y=0.5. All other parameters taken as in the previous figures.

In Fig. 5, we plot side by side our results for (¢) for the
Markovian and non-Markovian regimes in the OU case with
n=1, while in Fig. 6 are the results for the EDH case. The
results for the differences A¢ and A¢?, for the n=1 multi-
plicative noise case, are shown in Figs. 7 and 8 for the OU
and EDH cases, respectively.

The results shown in Figs. 5-8 again indicate that, as
expected and similar to the additive noise n=0 case, that the
two dynamics, local and nonlocal, become closer to each
other the larger is the kernel damping parameter. They also
seem to indicate that in the multiplicative noise case, the two
dynamics are closer to each other for the same parameters
used in the additive noise case. This can be more quantita-
tively estimated through the differences (3.3). The results for
the time scales when the two dynamics begin to be suffi-
ciently close to each other are also presented in Table 1.

We note from the results shown in Table I that the system
variable ¢ in the case of the GLE with OU additive noise
tends to approximate the corresponding Markovian dynamics
faster than in the case of the multiplicative noise case. The
opposite seems to happen to the equal-time-correlation func-
tion (¢?), where in the case of OU multiplicative noise, it is
faster than in the case of additive noise. The behavior of A¢
in the additive noise cases indicates that the averaged system
variable {¢) is approached faster to the Markovian dynamics
than in the multiplicative noise cases. The behavior for the
dynamics of (¢?), when looking at the behavior of A¢?, is
analogous, except in the EDH multiplicative noise case,
where it is slower than in the additive noise case.

In addition to the above results obtained for the ensemble-
average system variable ¢, it is also useful to determine how
the memory effects influence the thermalization time for the

system when put in contact with the thermal bath at some
temperature 7. For this, let us define an effective time-
dependent temperature for the system according to the equi-
partition of kinetic energy

Tege(t) = (*(1)). (3.4)
The results for T for the OU and EDH cases for the addi-
tive and multiplicative noise situations are shown in Fig. 9,
where it is also plotted the Markovian, local approximation
case, for comparison.

From the plots shown in Fig. 9, we again see the overall
behavior seen in the previous plots. The larger is the relax-
ation time for the memory kernels (i.e., the smaller is the
damping parameter y of the memory kernels), the larger the
dynamics takes to approach the Markovian approximated
one. We also see how memory effects reflect in the thermal-
ization of the system. Larger bath relaxation times lead to a
longer time for the system to thermalize. Typically, for com-
parable bath relaxation-time scales, in the additive case, the
system tends to thermalize faster than in the multiplicative
case. In Table II, we give the approximate time (in units of
1/m) for thermalization for all the cases studied above and
where this behavior for the time for thermalization in each of
the types of dynamics analyzed can be verified. Note that in
all cases, with additive or multiplicative noise, the Markov-
ian dynamics tend in general to underestimate the time scale
for thermalization, when compared to the non-Markovian
dynamics, except for large y in the OU additive noise case,
where the thermalization in the non-Markovian dynamics
tends to be better approximated by the Markovian one. As far
the different dynamics are concerned, we observe from both

Y O Y N R B
0 5 10 15 20 25 30 35 40 45 50

04—l

FIG. 7. The differences A¢ and A¢? for the OU multiplicative case. All other parameters are kept fixed as before.

031143-7



FARIAS, RAMOS, AND DA SILVA

0 5 10 15 20 25 30

PHYSICAL REVIEW E 80, 031143 (2009)

FIG. 8. The differences A¢p and A¢? for the EDH multiplicative case.

the plots in Fig. 9 as from the results shown in Table II for
the thermalization times that the additive noise case always
tend to have a smaller thermalization time than the multipli-
cative noise case. This is observed for both the Markovian
and non-Markovian cases.

C. Markovian and non-Markovian dynamics in terms of the
temperature of the thermal bath

We now explore how the temperature of the thermal bath
will influence the results shown in the previous section. We
again concentrate on the differences between the Markovian
and non-Markovian dynamics and the thermalization time.
For this study, we consider the cases with the highest values
of y considered in the previous section, which gives the best
comparison between the dynamics. Keeping the highest val-
ues of 7y allows us to determine whether the comparison
between the two dynamics improves or worsens as the tem-
perature is changed.

0.8
=
o -
= 0.6
— Markovian
0.4 — NonMarkovian, y=0.5| 7
-~ NonMarkovian, y=1.0| 1
0.2} -- NonMarkovian, y=5.0| 4
0.0 | I I A IS A Y
-0 5 10 15 20 25 30 35 40 45 50
(a) t
1.0H]
0.8

— Markovian
-~ NonMarkovian, y=0.1|

-- NonMarkovian, y= 0.3
— NonMarkovian, y=0.5|

T S N B
30 35 40 45 50

P R
20 25

(c) t

The results for the differences A¢ and A¢?* for the GLE
with OU kernel are shown in Fig. 10, while for the GLE with
EDH kernel are shown in Fig. 11. The time scale for which
the full non-Markovian dynamics approaches the respective
Markovian dynamic approximation, in each of the cases
studied here, are tabulated in Table III.

From the results shown in Table III, we can see that
higher temperatures for the thermal bath give only minor
improvements in the OU additive noise case as regarding the
approach of the non-Markovian dynamics to the approxi-
mated Markovian one. But in the multiplicative (OU) case,
the changes are much stronger, with (¢) and {¢?) approach-
ing much faster to the Markovian dynamics the larger is the
temperature. In the EDH case, for the additive noise, ()
tends to approach slower to the Markovian approximation
and in the multiplicative noise case, the approach is much
faster compared to the additive one. But the correlation (¢?)
changes much differently. In the EDH additive noise case,
the Markovian approximation worsens as the temperature is
increased, while in the multiplicative case the Markovian

— Markovian 7
--- NonMarkovian, y=0.5
- NonMarkovian, y= 1.0
-- NonMarkovian, y= 5.0

L L L P T T ) O B
% 5 10 15 20 25 30 35 40 45 50
(b) t

0.6 — Markovian b
: -- NonMarkovian, y=0.1

0.4 — NonMarkovian, y=0.3|
o2k -~ NonMarkovian, y= 0.5 |
0.0 S T S S [ S S
-0 5 10 15 20 25 30 35 40 45 50
(d) t

FIG. 9. The effective temperature T, for the (a) OU n=0 case, (b) OU n=1 case, (c) EDH n=0 case, and (d) EDH n=1 case.
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TABLE II. The approximate time for thermalization, in units of
1/m, for the Markovian and non-Markovian dynamics, determined
when Eq. (3.4) approaches the temperature of the thermal bath.

Y TMarkov add TOU add TMarkov mult TOU mult
0.5 37 72
1.0 4 18 27 68
5.0 4 38

TMarkov add TEDH add TMarkov mult TEDH mult
0.1 152 126
0.3 4 39 27 77
0.5 33 74

approximation improves, but only slightly for high tempera-
tures. Similar behavior to this will also be seen below for the
thermalization times for each of the dynamics. We can also
observe from the results shown in the plots of Figs. 10 and
11 that for the multiplicative noise case, for both non-
Markovian dynamics studied, the memory effects are much
stronger at lower temperatures than at high temperatures and
these effects last for a much longer time than in the additive
noise cases.

We now study how the thermalization time for each of the
dynamics studied here will change when the temperature is
changed. In Fig. 12, we show the plots for the various cases
of dynamics studied here. The thermalization times for each
case are tabulated in Table IV.

From the results shown in the plots of Fig. 12 and in Table
IV, we can clearly see that while the cases with OU noise the
thermalization times for the Markovian and non-Markovian
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FIG. 10.
respectively.
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dynamics are similar (using the largest values of vy consid-
ered in Table I), the non-Markovian dynamics with EDH
noise, for both the additive and multiplicative cases, pro-
duces thermalization times considerably larger than those of
the Markovian cases. As in the case of A¢?’ for the EDH
additive noise case seen in Table III, we again see here the
anomalous behavior of the thermalization time increasing as
the temperature is increased in the EDH additive noise case.
This is opposite to the behavior seen in the OU and EDH
noise cases with multiplicative noise. Note also that in the
case closer to the Markovian dynamics, the OU additive
noise case, there is almost no relevant difference in thermal-
ization times as the temperature is varied up to 2 orders of
magnitude. For other values of temperature of the thermal
bath we tested, we found that these conclusions do not
change.

D. Non-Markovian dynamics in terms of the frequency of the
thermal bath

We now investigate how the frequency of the thermal bath
affects the dynamics of the system. Note that in this case,
only the GLE with EDH kernel is affected (the Markovian
and OU dynamics are independent of the frequency of the
thermal bath). As before, we can better interpret the results
by analyzing the differences (3.3) and the graph of the effec-
tive temperature. From them, we obtain the time scale for the
non-Markovian dynamics to approach the Markovian one
and we can better estimate the differences in thermalization
times (if any) in both cases. The results for this case, when
the frequency of thermal bath is varied, are shown in Fig. 13
for the differences (3.3), while the behavior of the effective
temperature, when the frequency of the bath is changed, is

0.15 ; ; ‘ ‘

The results for A¢ and Ag? for the OU n=0 case, (a) and (b), respectively, and for the OU n=1 case, (c) and (d),
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FIG. 11. The results (a) and (b) for A¢ and A¢?* for the EDH n=0 case and (c) and (d) for the EDH n=1 case.

shown in Fig. 14. In all cases, the frequency () is in units of
the frequency of the system, m, and the time is in units of
1/m. As in the previous analysis for the EDH case, we con-
sider y=0.5 and all other parameters kept fixed at the values
as given before except );. The time scales for the non-
Markovian and Markovian dynamics to approach to each
other are given in Table V, while the time for thermalization
for each case is given in Table VI.

From the results seen in Fig. 13 and Table V, we can note
that the smaller is the frequency of the thermal bath, the
larger it takes for both (¢) and (¢?) in the non-Markovian
case to approach the Markovian approximation. As the fre-
quency of the bath is increased beyond the frequency of the
system, the time scale for the non-Markovian dynamics to
approach the Markovian one tends to decrease, but it also
rapidly reaches a point where larger frequencies for the bath
would not make the Markovian approximation to improve
too much.

The results are seen to be much different again when the
thermalization of the system is studied. From the thermaliza-
tion plots seen in Fig. 14 and the thermalization times given
in Table VI, we see that smaller frequencies for the bath,

compared to the system’s frequency, lead to much higher
thermalization times for the non-Markovian approximation
compared to the Markovian one. The thermalization time for
the non-Markovian dynamics is seen to decrease with an
increase of (), except the multiplicative noise case, where
above a certain point ), =m, the thermalization time starts
to increase again. Though the importance of the memory
kernel is expected to be less important the larger is (),
which makes it fast oscillate, the behavior in the multiplica-
tive noise is probably far less simple because the higher are
the nonlinearities in that case, which are brought by the
system-dependent dissipation and noise.

IV. CONCLUSIONS

In this work, we have analyzed in detail the differences
between the dynamics of a system when treating it in terms
of its full non-Markovian equation of motion and when ex-
pressing it in terms of its Markovian or local approximated
form. Having set the appropriate description for the non-
Markovian equations, we have then studied the applicability

TABLE III. The approximate time scale, in units of 1/m, for the non-Markovian dynamics to approach
the Markovian one, within a precision of 107 for the differences defined in Eq. (3.3) for different tempera-
tures for the thermal bath. The parameter vy considered is the largest one considered in Table I in the OU

(y=5.0) and EDH cases (y=0.5).

2 > > >
T Adou aad APoy asa AP0oU mut ADou mut APepH add  ADEpH ad APEpH mut ADEDH mui

0.1 17 10 140 206
1.0 14 7 27 12
10.0 13 6 6 7

68 24 126 220
53 26 23 67
42 49 13 61
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FIG. 12. The results for the effective temperature as a function of time, when the temperature of the thermal bath is changed, for the cases
of (a) Markovian additive noise, (b) Markovian multiplicative noise, (c) OU additive noise, (d) OU multiplicative noise, (¢) EDH additive

noise, and (f) EDH multiplicative noise.

of the local approximation for these equations. We here have
concentrated in two forms for the non-Markovian memory
kernel, the OU and EDH cases, and we have analyzed the
cases of additive and multiplicative noises in both cases. We
have seen that in general, for most of the parameters in both
cases, the local approximation is far from being to represent
a good description of the dynamics. Obviously, since these
are all dissipative systems, we expect the two dynamics, non-
Markovian and Markovian, to tend to each other asymptoti-

cally. We have then analyzed how long it takes for each of
the non-Markovian dynamics studied to tend to the Markov-
ian ones. We have analyzed both the time for the system
variable, (¢), as well for the equal-time correlation, {¢?). We
have also analyzed the thermalization time for each of the
dynamics by studying the behavior of the correlation func-
tion {¢?), which, according to the equipartition theorem,
can be associated to the temperature of equilibration of the
system.

TABLE IV. The approximate time for thermalization, in units of 1/m, for the Markovian and non-
Markovian dynamics, determined when Eq. (3.4) approaches the temperature of the thermal bath.

T Tmarkov add Tmarkov mult TOU add TOU mult TEDH add TEDH mult
0.1 7 123 135 30 570
1.0 4 27 38 33 74
10.0 6 9 15 48 65
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FIG. 13. The results for A¢ and A¢?, when the frequency of the thermal bath (in units of ) is changed, for the EDH n=0 case, plots
(a) and (b), respectively, and for the EDH n=1 case, plots (c) and (d), respectively.

Each of the dynamics were investigated by changing the
main parameters characterizing the thermal bath: the damp-
ing term for the memory kernels, vy, the temperature 7, and
the frequency () of the thermal bath. The parameters of the
system were kept fixed for convenience as well the magni-
tude of the dissipation, 7, which is a linear parameter enter-
ing in all the dynamics and that was kept fixed at the point
where all the dynamics were initially underdamped. By in-
creasing 7y, the memory kernels are damped faster and the
Markovian approximation tends to be better as expected. As
v is varied, besides the expected behavior of the non-
Markovian dynamics to approach faster the Markovian one
the larger is 1y, it is also observed that for the same value for
the memory kernel damping term, in general, the cases with
EDH non-Markovian dynamics tend to approach faster to the
Markovian dynamics than the OU cases, as far the thermal-
ization times in each of the dynamics are concerned. It is also
observed that in general, the Markovian dynamics tend to

overestimate the time for thermalization as compared to the
time it takes in the non-Markovian cases. The thermalization
times in the studied dynamics also tend to be larger in the
multiplicative noise cases than in the additive ones.

When analyzing the behavior of each of the dynamics
when varying the temperature and frequency of the thermal
bath, we have fixed the value of y and then investigated each
of the time scales for non-Markovian dynamics for {(¢) and
(¢?) to approach the corresponding Markovian approxima-
tion. By increasing the temperature, it is observed that the
Markovian approximation tends to improve, except in the
case of the dynamics of the correlation (¢?) in the EDH case
with additive noise where the Markovian approximation
tends to worsen and in the OU additive noise case, where the
dynamics is weakly dependent on the temperature of the
thermal bath. These results seem to indicate that the effective
dissipation in the other dynamics is dependent on the tem-
perature of the thermal bath, in particular in the multiplica-

(b) ¢ °

FIG. 14. The results for the effective temperature as a function of time, when the frequency of the thermal bath (in units of m) is changed,
for the cases of (a) EDH additive noise and (b) EDH multiplicative noise.
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TABLE V. The approximate time scale, in units of 1/m, for the
non-Markovian dynamics to approach the Markovian one, within a
precision of 1073 for the differences defined in Eq. (3.3) for differ-
ent frequencies of the thermal bath. The parameter y considered is
the largest one considered in Table I in the EDH cases (y=0.5).

Qo/m  Adppmaaa Aipm aad Adepi muc APEpH mut
1.0 53 26 23 67
2.0 24 8 25 38
10.0 22 8 25 33

tive noise cases, where the effective dissipation seems to
increase much faster with the temperature than in the addi-
tive noise cases. The thermalization times shown in Table IV
are also indicative of this behavior. Finally, in the study of
how the frequency of the thermal bath affects the dynamics
(in the EDH memory kernel cases), we have seen that as the
frequency of the thermal bath is increased, the Markovian
approximation seems to improve till some frequencies close
to the system’s frequency. Above that value, there is little
improvement. We have also verified that for frequencies of
the thermal bath much below the system’s one, the Markov-
ian approximation worsens considerably.

A few generic results can also be drawn from the analysis
of all cases studied here. In particular, we can note from the
obtained results that either the local approximation underes-
timates the effective dissipation seen in the non-Markovian
dynamics or overestimates it in most of the regions of pa-
rameters. The local (Markovian) approximation for the dy-
namics tends to be better at larger values of the bath damping
term 7y and for larger values of the frequency (), and tem-
perature T of the thermal bath (except for the correlation (%)
in the case of EDH memory kernel with additive noise). The
difference between the dynamics is larger at short times, ex-
actly as expected because of the finite memory times for the
non-Markovian equations. The different simulations we have
performed with different bath parameters allowed us to esti-
mate the approximate time scales when the Markovian ap-
proximation may become an appropriate description of the
dynamics. In general, this time scale is much larger in the
multiplicative noise cases than in the additive noise ones.
Also, given the specific differences seen in each of the dy-
namics when varying, e.g., either v, T, or (), by looking at
these differences when changing the properties of the ther-
mal bath may be a useful way to discriminate possible sto-
chastic phenomena in nature and to tell whether they can be
dominated by additive or multiplicative noises.

Finally, we should point out the possible connection and
relevance of our studies with those related to the dynamics of

PHYSICAL REVIEW E 80, 031143 (2009)

TABLE VI. The approximate time for thermalization, in units of
1/m, for different frequencies of the thermal bath in the in the
Markovian approximation and in the EDH additive and multiplica-
tive noise cases.

9'0/ m Tmarkov add Tmarkov mult TEDH add TEDH mult
1.0 33 74
2.0 4 27 13 8

10.0 9 35

field theory models. It has been shown [10,11] that non-
Markovian kernels of the same form as studied here can also
appear in the studies of the effective dynamics of an order
parameter in field theories and in cosmology in general.
Since the studies of dissipative processes in those applica-
tions are related to time nonlocal terms in the effective evo-
lution equation of the system, for example, for a background
scalar field describing the system or an order parameter for a
phase-transition problem, we expect our results to be of rel-
evance for understanding the relevant dynamics in those situ-
ations as well. In particular, our studies may be useful to
clarify the applicability or not of approximating the dynam-
ics in those problems as local ones, as usually it is consid-
ered to be the case there. The results we have obtained here
show that, in many cases, the local approximation is not a
reliable description of the true non-Markovian dynamics.
The difference can be very large at short times and continue
to be for long-time scales, with memory effects making a
strong contribution for the dynamics. This may have strong
consequences, for example, when studying thermalization
and equilibration times in phase-transition problems or in the
problem of the production of particles and radiation in cos-
mology. In the dynamics of some systems in contact with a
thermal bath, as we have seen in the studies performed in
this work, the usual local Langevin equation typically under-
estimates the thermalization with respect to the true dynam-
ics, indicating that the use of local approximated forms for
the study of the dynamics can be unappropriated and even
lead to erroneous results as regarding to the system’s equili-
bration and thermalization time scales.
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